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Abstract: In recent years, the rapid growth of the Internet of Things (IoT) has raised concerns about the security and
reliability of IoT systems. Anomaly detection is vital for recognizing potential risks and ensuring the optimal functionality
of IoT networks. However, traditional anomaly detection methods often lack transparency and interpretability, hindering
the understanding of their decisions. As a solution, Explainable Artificial Intelligence (XAI) techniques have emerged
to provide human-understandable explanations for the decisions made by anomaly detection models. In this study,
we present a comprehensive survey of XAl-based anomaly detection methods for IoT. We review and analyze various
XALI techniques, including feature-based approaches, model-agnostic methods, and post-hoc explainability techniques,
and discuss their applicability and limitations in the context of IoT. We also discuss the challenges and future research
directions in XAl-based anomaly detection for IoT. This survey aims to provide researchers and practitioners in the field
of IoT security with a better understanding of the current state of XAI techniques and their potential for enhancing

anomaly detection in IoT systems.
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1. Introduction

The rapid proliferation of IoT technologies has revolutionized numerous industries, enabling seamless connection
and communication between physical devices and the digital world. However, this interconnectedness has also
introduced new challenges, particularly in terms of ensuring the security and reliability of IoT systems. The
identification of anomalous patterns or behaviors that differ from typical operations is a critical function of
anomaly detection in the mitigation of these difficulties. With the increasing complexity and scale of ToT
networks, traditional anomaly detection techniques often struggle to provide accurate and interpretable results
[1]. Traditional anomaly detection techniques cannot provide adequate results in the face of the increasing
complexity and scale of IoT networks. This highlights the need for more sophisticated and adaptive approaches
in IoT systems.

XAT has emerged as a promising approach to enhance the transparency and interpretability of machine
learning models. XAI techniques aim to provide human-understandable explanations for the decisions made
by Al systems, thereby enabling users to trust and comprehend the underlying reasoning [2]. As technological
landscapes advance, the need for clear and understandable explanations in Al systems becomes increasingly

crucial. The integration of XAI into anomaly detection for IoT marks a significant paradigm shift, addressing
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the inherent black-box character that often hides conventional methods. This revolutionary integration not
only improves interpretability but is essential for accelerating high-stakes decision-making in the complex IoT
environment. Furthermore, the interpretability offered by XAl extends its impact beyond elucidation. It serves
as a proactive tool in identifying potential vulnerabilities, thereby contributing significantly to the development
of robust security measures tailored for the complex deployments of IoT systems [3].

An in-depth examination of XAlI-based anomaly detection techniques for IoT is essential due to the
increasing reliance on IoT systems in critical applications such as smart cities, healthcare, transportation, and
industrial automation. These systems generate vast amounts of data, making it challenging to detect anomalies
accurately and promptly. Additionally, the consequences of undetected anomalies can be severe, ranging from
financial losses to safety hazards. Therefore, the development of robust and explainable anomaly detection
methods is important to ensure the integrity, reliability, and security of IoT networks [4]. These methods are
necessary to support the widespread use of IoT technology and elevate industry standards. As a result, a
detailed examination of developments in this field stands out as a step towards encouraging the widespread
adoption of secure and effective IoT applications.

This paper contributes to the literature by presenting a systematic and comprehensive overview of the
recent studies focusing on XAlI-based anomaly detection mechanisms in IoT networks. The study explores
the existing literature and research efforts in this domain, analyzing the strengths and limitations of different
approaches. It also highlights the importance of interpretability in anomaly detection and discusses the potential
benefits and challenges associated with integrating XAI techniques into IoT systems. This survey intends to
serve as a useful resource for researchers, practitioners, and decision-makers involved in IoT security and anomaly
detection by understanding the state-of-the-art methods and advancements in XAl-based anomaly detection.
By providing a systematic overview of the current state-of-the-art methods and their potential applications,
this survey aims to encourage further research and development in XAT techniques to enhance the security and
reliability of IoT systems. Additionally, by highlighting the strengths and weaknesses of existing methods, the
survey provides readers interested in understanding the current landscape of XAl-based anomaly detection in
IoT systems with a detailed perspective. In this context, it thoroughly addresses the role of interpretability in
the anomaly detection process, examining the potential benefits and challenges associated with the integration
of XAI techniques into IoT systems. This comprehensive survey seeks to be a valuable resource for researchers,
practitioners, and decision-makers involved in IoT security and anomaly detection by offering a deep insight
into the current state of affairs. It aims to shape and encourage efforts to enhance the reliability of IoT systems
both in academia and industrial applications.

The paper is organized as follows: Section 2 provides detailed information about IoT, attacks in IoT, and
anomaly detection in IoT. Section 3 introduces XAl, its terminology, the taxonomy of XAI, and explainability
methods. Section 4 presents a comprehensive review of existing XAl-based anomaly detection approaches,
categorizing them based on their underlying methodologies. Section 5 discusses the challenges and potential
future works. Finally, Section 6 concludes the survey and provides insights into the significance of XAI in

addressing the limitations of conventional anomaly detection techniques for IoT applications.

1.1. Research methodology

Once the motivation for the study is identified, a comprehensive research methodology is developed. This

precisely designed methodology not only explains the overall approach but also details the systematic procedures
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employed throughout the paper selection process. This strategic approach aims to uphold the integrity of the

research process and contribute to the overall coherence and reliability of the study.

1. Literature search phase: The first step is selecting search phrases that are specific to the topic. These search
phrases include “XAI”, “Anomaly Detection”, “Anomaly Detection in IoT”, “Interpretable ML(IML)”,
“XAI in IoT”, and “Intrusion Detection in IoT”. Related studies have been researched from digital

databases such as ScienceDirect !, IEEE Xplore 2, Springer >, ACM Digital Library *.”

2. Paper selection criteria: We used the following criteria to determine the papers to be excluded from this

study:

e papers not directly related to IoT,
e white papers,
e papers published before 2018,

3. Paper classification: Due to page limitations, we selected 24 papers that meet our selection criteria.
We classified these papers based on the explanation methods they used as follows: 16 papers employing
feature-based explanations, 4 papers employing perturbation-based explanations, one paper employing
rule-based explanations, one paper employing example-based explanations, and others are studies with

more than one explanation type.

2. Anomaly detection in IoT

2.1. IoT

IoT is a technology in which more and more smart devices are located, and these devices communicate with
each other. It has been included in many parts of our lives, from smart home systems we use in our daily
lives to smart devices used in industrial areas. IoT supports diverse applications, including smart homes, smart
cities, healthcare, agriculture, logistics, transportation, and energy. It basically creates a network where data is
transmitted, collected, and processed through devices. There is a transition from certain layers in the transfer
of data. These layers are called the perception layer, network layer, and application layer [6]. The perception
layer consists of physical devices and sensors that collect data from the surroundings. Data transmission from
the perception layer to the application layer is facilitated by the network layer. The application layer then
processes this data to give end users useful information. IoT architecture is designed to be scalable, flexible,
and interoperable, enabling effective communication between distinct devices and applications [7].

The increasing number of devices in IoT requires data transmission over long distances. It has been
observed that wireless connection is suitable for long distances. A protocol is needed to ensure the connection
between devices. Wi-Fi, Bluetooth, ZigBee, and LoRaWAN are some of the common protocols used in IoT [8].
There are sensors where data is generated or collected at one end of the established wireless connection. These
sensors can be GPS units that receive location information or cameras that collect images. These received data
can be transmitted to the cloud with the help of the specified protocol or stored locally. The data sent to the

cloud is processed here, and the necessary action is taken.

IScienceDirect [online], https://www.sciencedirect.com/, accessed [05/01/2024].

2IEEE Xplore [online], https://ieeexplore.ieee.org/Xplore/home.jsp, accessed [05/01/2024].
3Springer Link [online], https://link.springer.com/, accessed [05/01/2024].

4ACM Digital Library [online], https://dl.acm.org/, accessed [05/01,/2024].
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2.2. IoT attacks

IoT technology has a profound impact on our daily lives since it allows devices to connect to the Internet and
communicate with each other. This connectivity makes our world smarter and more interconnected, but it
also introduces new opportunities and risks for cyber attackers. IoT devices often have security weaknesses,
allowing hackers to expand their targets and launch attacks through IoT networks. These vulnerabilities in IoT
devices allow attackers to conduct hacks, data breaches, delays in service, and other harmful actions. Issues
such as poor password management, missing updates, or inherent vulnerabilities can grant attackers access to
and control devices [9]. This may compromise both individual and organizational security. It is possible to

classify attacks that compromise IoT security according to IoT architecture [10].

1. Perception layer attacks: This layer includes sensors, cameras, and other devices designed to detect and
gather data from the physical environment within an IoT system. It collects, analyzes, and distributes
contextual data for decision-making. However, this layer is susceptible to cyberattacks since attackers
may alter the sensors and insert false information or malicious requests into the system. Hardware attacks
are commonly found in this layer [8]. The probable attack types include hardware tampering, fake node

injection, malicious code injection, and WSN Node Jamming [10].

2. Network layer attacks: The network layer facilitates communication among all devices in the IoT system.
It encompasses network interfaces, communication channels, network management, information repair,
and intelligent processing [11]. This layer serves as the central hub for collecting and integrating com-
munications from various devices, enabling the routing of data to specific devices, typically through a
gateway. Attacks in this layer target network traffic by taking advantage of weak points in the network.
Some common attacks in this layer include RFID Spoofing, Sinkhole attacks, Man-in-the-middle attacks,
Denial of Service, Routing Information attacks, and Sybil attacks [10].

3. Application layer attacks: The application layer serves as an interface for users. This layer facilitates
actions such as accessing and managing IoT devices, processing data from sensors, and making decisions.
Privacy and confidentiality issues are important at this layer, as they pertain to the user and their
sensitive information. Consequently, this layer becomes a prime target for various types of cyberattacks.
The common attacks in this layer are Phishing attacks, Viruses, Worms, Trojan Horses, Spyware, and

Denial of Service [12].

2.3. Anomaly detection techniques in IoT

It has become important to process and transmit data to these devices accurately and securely with the
expanding number of devices in the IoT. Detecting anomalies or attacks that may occur in the IoT network
is critical to ensure IoT security. It is essential to identify the typical behavioral patterns of users within the
system to determine abnormal situations. Anomaly is a term used to describe unusual or unexpected behavior
in a system. The process of detecting such behavior is known as anomaly detection [13]. Anomalies can be
categorized into three types: point anomalies, contextual anomalies, and collective anomalies [14]. Data points
that deviate significantly from the rest of the dataset are known as point anomalies. Data points that are normal
in one context but unusual in another are referred to as contextual anomalies. Collective anomalies are a group
of data points that are unusual when seen collectively but appear normal when viewed individually [15].
Anomaly detection techniques are important in many industries, including cybersecurity, finance, network

monitoring, and industrial processes, since they improve the discovery and mitigation of potential hazards
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or problems. There are several techniques commonly used for anomaly detection, categorized differently in
the literature. One of them is statistical-based anomaly detection, which uses statistical methods to identify
anomalies [16]. This technique is appropriate when the system’s usual behavior can be represented using
statistical methods. It does not require existing security knowledge and can detect new attacks, making it
useful for long-term monitoring and recognizing denial-of-service attacks. Another technique is the data mining
approach [17]. Tt is valuable for extracting patterns from big data stores in order to detect known and novel
attacks more effectively. By providing information important for anomaly detection, this strategy decreases
the storage of vast amounts of data. Various data mining technologies have been employed to detect known
and unknown attacks. Another anomaly detection technique is knowledge-based detection [18]. It is based on
predefined rules or knowledge to identify anomalies in a dataset. This strategy focuses on recognizing anomalous
patterns or data points by utilizing an expert’s expertise and experience. Data is evaluated in this method to
find probable abnormalities based on predefined rules. Anomalies are identified as data points that violate
rules or deviate from the expected norm. The last technique is machine learning-based detection [19], which
uses machine learning algorithms to identify anomalies. It includes training the system on a dataset of normal
behavior and then using that information to detect deviations from the normal behavior. The advantage of
this method is that it can adapt to new types of attacks and detect previously unknown attacks. Supervised
and unsupervised learning methods are the most commonly employed techniques in the literature for machine
learning-based anomaly detection. Supervised methods tend to yield more accurate results as they involve data
labeling during the classification process, thereby providing more reliable outcomes. In contrast, unsupervised
methods do not require a labeling process, which enables the use of larger datasets and helps reduce time
and resource costs associated with data labeling. Furthermore, unsupervised methods can detect previously
undefined or unexpected anomalies. While both approaches have their respective advantages and disadvantages,
the choice of method should be guided by specific application scenarios and the characteristics of the data [20].

Network-based and host-based network security approaches represent two fundamental strategies used
to ensure information security [69]. Each provides different levels of protection and monitoring, often incor-
porating complementary elements. The network-based approach focuses on securing the overall network of an
organization by monitoring, filtering, or controlling various security measures on network traffic. Additionally,
it is used to strengthen the defense mechanisms of the organization against cyber threats. Network-based se-
curity enhances security at the network level with the ability to provide comprehensive protection. However,
this approach may also have disadvantages, such as a lack of detailed content analysis or limitations in being
effective only at the network level. Therefore, it is typically combined with host-based security to create a
more comprehensive security strategy [70]. On the other hand, the host-based approach aims to protect each
computer or host itself. This approach includes security measures at the level of the host’s operating system
and applications. Antivirus software, firewalls, and computer-specific security settings are among the elements
of host-based security measures. In this way, an environment is created where each computer is individually
secure [71]. Combining these two security approaches can create a comprehensive security strategy. The use
of both approaches together enhances not only the overall security of the network but also strengthens the

protection of individual computers.

2.4. XAl-based anomaly detection

Anomaly detection is critical in environments with continuous data flow, such as IoT. Fast and accurate detection

of anomalies that may occur due to security breaches and system errors is a great necessity for security and
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efficiency. The reasons and consequences of anomaly detection must be explainable to the users. In this context,

XAI techniques are widely used in anomaly detection in IoT systems.

The first step in the anomaly detection mechanism involves collecting data from IoT devices, which is
gathered into a data pool via devices such as sensors and cameras. These data are generally large in volume and
can be of different types such as textual, image, or time-series. The gathered data is preprocessed to become
proper for evaluation. During this stage, missing data is imputed, noise is reduced, and data transformations
are applied. Effective data cleaning and organization are the basis of a successful anomaly detection mechanism
[21]. Following the data preprocessing phase, machine learning algorithms are employed to analyze the dataset.
During this stage, learning algorithms begin to model the data for anomaly detection. Traditionally, the models
used at this stage are often considered "Black-box” models, implying that their internal workings or decision-
making processes are not fully transparent or explainable. It can be challenging to provide a clear understanding
of why a model made a particular prediction or decision. To enhance reliability and interpretability in anomaly
detection, XAI techniques are integrated into the mechanism. XAI is employed to elucidate and interpret
the decisions made by machine learning models. One of the XAI methods evaluates each feature’s impact on
the result at the feature extraction stage. Various explanation methods, such as LIME (Local Interpretable
Model-Agnostic Explanation), SHAP (Shapley Additive exPlanations), and Decision Trees (DT), are utilized
[22].

These processes collectively contribute to a more comprehensive understanding of the origins and im-
plications of abnormal situations. The decisions provided by the anomaly detection model are clarified using
explanatory models built with XAI techniques. They offer both operational teams and their end users the
opportunity to understand the causes of such abnormal situations better. The use of XAI in IoT anomaly

detection is shown in Figure 1.
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Figure 1. The structure of XAl-based anomaly detection mechanism.
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3. Explainable artificial intelligence (XAI)

XAI is the process of artificial intelligence systems explaining their decisions and results in a manner that is
understandable to humans. XAI aims to improve transparency, comprehensibility, and reliability of seemingly
complex AT models and algorithms [23]. It helps people understand and trust Al technologies, as explainability
is critical for understanding, validating, and questioning AI system decisions. Users often desire insights into
how Al systems work and what factors influence their outcomes, particularly in areas where significant decisions
are involved. XAI simplifies the tasks of tracking and analyzing the system’s decisions by providing essential
information.

XAT focuses on the transparent understanding of model decisions, a field that has emerged with increasing

demand for the complexity of powerful learning models. In this context, human-based evaluations of XAl include
important factors such as usability and user experience (UX). Human-centered evaluations focus on evaluating
the reliability and acceptability of XAI systems, as well as ensuring that end users effectively understand these
systems. Many different methodologies are used for human-based evaluations of XAI systems [54]. Various
methods such as usability testing in laboratory environments, participant observation, surveys, and field studies
are widely used to evaluate how XAI performs under real-world usage conditions. These methodologies provide
a significant range of tools for understanding and improving users’ interaction with XAI systems. The impact of
XAT on UX may vary depending on application domains and context. For example, the user interactions of an
XAI system in the financial sector and a system in the healthcare sector may differ. Therefore, XAI developers
must design and optimize their systems taking into account the application context.

Furthermore, addressing UX and understandability is crucial in the context of XAI. UX plays a vital
role. Researches [55, 56] show that making XAI more descriptive positively affects the user’s interaction with
the system. The connection between understandability levels and UX guides developers when designing and
optimizing XAI systems [55]. The human factor involved also brings with it ethical and privacy issues. Ethical
issues and privacy concerns that may arise during the use of XAI systems may affect the sustainable adoption of
this technology. Protection of users’ personal information and fair and transparent use of XAI, compliance with
ethical standards are important issues that should be emphasized. The study [57] highlights the importance
of using XAI to ensure trust and include ethical elements in IoT systems. It identifies the weaknesses of IoT
systems and emphasizes the need for tamper detection systems. It also provides an overview of XAI methods
for IoT systems, guiding their advantages, disadvantages, and ethical considerations.

Recent studies employing XAI in the realm of IoT anomaly detection have demonstrated significant
achievements. These endeavors often focus not only on accuracy rates but also on performance metrics such as
precision, recall, F1-score, and AUC-ROC. As a case in point, Alani et al. [39] showcased an XAl-based anomaly
detection model surpassing a 99.94% accuracy rate. Additionally, a separate investigation led by Abououf et
al. [58] yielded impressive results, particularly in terms of F1 score, indicating a substantial performance
improvement compared to traditional methods. These findings underscore the effectiveness of XAI in IoT

anomaly detection, providing a foundation for further exploration in this field.

3.1. XAI taxonomy

In the literature, XAI taxonomy has been approached differently in various studies [24, 25]. Taxonomy serves
to systematize the process of understanding and explaining AI systems by categorizing and arranging XAI
approaches using diverse dimensions. As shown in Figure 2, the taxonomy of XAl is given according to the XAI

implementation, scope, and applicability.
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Figure 2. XAI Taxonomy

1. Ante-hoc & post-hoc: Two approaches are used in the application of explainability to the models: ante-
hoc and post-hoc. Ante-hoc approaches incorporate transparency principles and techniques directly into
the model creation process. Therefore, ante-hoc models do not require an additional XAI method for
producing explainability. Post-hoc approaches are used after the model has been trained to explain the
model’s predictions [24]. Tt analyzes the decision processes of complex or black-box models and applies
explainability techniques afterward. These techniques offer the advantage of allowing transparency and
explainability aspects into existing models later. In this way, more sophisticated or higher-performance

models can be used, and the decision processes of these models can be made understandable.

2. Local & global: Local explanations deal with explaining the prediction of a given instance or input,
whereas global explanations are concerned with providing an understanding of the model’s overall behavior
[26]. Local explanations are useful for understanding why a particular prediction was made, while global
explanations help understand how the model works overall. Both approaches are key components of
XAI and increase the transparency of Al systems. They differ from each other depending on the scope
and target of the explanations. Local explanations are essential in understanding the inner workings
of a particular data point and can be used to provide the user with information on a specific instance.

Additionally, global explanations explain how the model works and general trends [22].

3. Model-specific & model-agnostic: These approaches can be distinguished based on the specific model
they are intended for and their general applicability. Model-specific methods are designed to explain
the decisions of a specific model, while model-agnostic methods are designed to explain the decisions of
any model. Model-specific methods are tailored to a particular model’s design and attributes; however,
model-agnostic methods are more general and can be applied to any model. Model-specific approaches
are frequently more accurate and efficient, but they take more time to create and may not be transferable
to other models [25, 27].

3.2. Explainability methods
Many explainability methods have emerged with the prominence of the concept of XAI. In this study, feature-

based, rule-based, perturbation-based, and example-based methods are discussed.
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1. Feature-based explanations: These methods explain what the inputs used for the model contribute to the
model output. Many methods have been used to reveal the factors affecting the decision of the model.
These are feature importance, Partial Dependence Plots (PDP), LIME, SHAP, Individual Conditional
Expectation (ICE), etc [27]. LIME and SHAP are frequently encountered methods in the literature.
LIME modifies the input of data samples and assesses how predictions change, aiming to comprehend
the model. This approach is valuable for understanding what human interests are when the output of a
model is observed. SHAP relies on game theory to explain the output of a model. It considers all feature

combinations to determine their contribution. It can be applied to various types of models.

2. Rule-based explanations: These explanations use logical rules and circumstances to explain the decision-
making process of models. These rules can be either manually created or automatically generated
[28]. Tt requires providing accessible and interpretable insights into how the model makes predictions
or categorizes data. Rule-based explanations are frequently expressed as if-then statements in which
specific circumstances or combinations of features are described, and associated decisions or effects are
decided. XAI supports trust, openness, and interpretability by allowing people to understand and reason

about the underlying logic and components that influence the model’s decisions.

3. Perturbation-based explanations: These explanations are post-hoc methods for explaining model decisions.
They involve degrading or altering the input properties of a model to observe their impact on results. By
analyzing the changes in the output of the model due to perturbations, it becomes possible to determine
which input features are most important to the model’s decision. This technique is model-agnostic and
applicable to any model, but it can be computationally expensive and less suitable for large datasets. There
are different perturbation-based methods such as LIME, RISE (Random Input Sampling for Explanations),
and Occlusion [29]. The LIME method is an example of a perturbation-based XAl technique that operates
on information or feature superpixels. Visual descriptions of individual superpixels are developed by
progressively supplying input patches. RISE is one of the methods for improving the predictability and
functionality of AT models. In the Occlusion method, first, a data sample is selected, and a specific region
or feature is selected from that sample. The selected area will then be temporarily closed or modified. The
model makes predictions again on this changing data. In the last step, the estimated difference between
the original and modified data is checked.

4. Example-based explanations: These explanations are used to explain the behavior of models by using data
examples. They select instances of certain input-output pairs to explain the model’s output and allow
users to comprehend the model’s decision-making process. It is commonly used in complex tasks like
image recognition and natural language processing. It illustrates the model’s features and the factors that
influence its decisions by showing how the model reaches a particular outcome. It is model-independent
and applicable to a wide range of models. Instead of interfering with or altering the model, example-based
explanation approaches analyze by choosing cases from the dataset, which makes the method highly

generalized and applicable [25].

4. X Al-based anomaly detection in IoT networks
This section provides a thorough overview of XAl-based anomaly detection studies in IoT application domains.
There are several survey studies in the literature addressing IoT, XAI, and anomaly detection. Especially in

recent years, many researchers have carefully investigated XAI techniques. For instance, some papers [72-75]
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only discuss the XAI system’s functionality and overview and do not include the concepts of IoT and anomaly
detection. Tjoa et al. [75] discuss the need for explanations in machine decisions, the challenges posed by the
black-box nature of deep learning, and provide a categorization of interpretability approaches in the healthcare
domain. On the other hand, some papers [76, 77] have achieved results by not only focusing on anomaly detection
but also analyzing studies across all IoT subdomains. Moustafa et al. [78] have focused only on post-hoc and
model-agnostic methods in their study although addressing the concepts of IoT, XAI and anomaly detection.
Javed et al. [79] evaluated the examined studies in terms of domain and technical aspects. The performance
metrics obtained in the studies were not discussed, and there were no examinations regarding XAl taxonomy. In
our study, the concepts of IoT, XAI, and anomaly detection have been comprehensively addressed, establishing
connections among them. The selected works have not only been evaluated in terms of XAI taxonomy but have
also been examined through a general security approach. A comparison of our study with other existing survey

works is presented in Table 1.

Different from other survey studies, we conducted a literature review covering XAlI-based anomaly
detection mechanisms in IoT networks and summarized them according to their taxonomies and methodologies,
as presented in Table 2. Additionally, in Table 3, we provided a summary of studies based on their security
approach and anomaly type. These help researchers and practitioners better adapt to their needs and application
scenarios when choosing a particular explanation method. The most preferred methods in the field of anomaly
detection in IoT may vary depending on the complexity of the data and the problem context. However, based
on the studies in the literature, it has been observed that the most favored explanation method is the feature-
based explanation method. When IoT data emphasizes the importance of specific features like temperature,
humidity, and pressure, feature-based methods are often preferred. Thus, the complexity of IoT data is reduced
to a simpler and more understandable level, typically enhancing the explainability of the system. Zolanvari
et al. [31] discussed various examples of XAI applications in different fields such as industrial environments,
smart grids, 5G telecommunications, smart homes, and healthcare. The authors argued that XAI is essential to
ensure transparency, accountability, and reliability. The paper proposed a feature-importance-based approach,
using a separate model development and statistical techniques to explain the behavior of the AT model. The
proposed approach outperformed other methods in terms of accuracy and interpretability. This work can be
considered an important step toward increasing the transparency and explainability of AI systems. Khan
et al. [32] proposed an Autoencoder-based detection framework using convolutional and recurrent networks
for discovering cyber threats in Industrial IoT (IIoT) networks and explaining the model. The framework
incorporated an XAI method to provide explanatory reasoning for prediction decisions and underlying data
evidence. By employing a two-step Sliding Window (SW) approach, the framework effectively extracted features
that capture the contexts of malicious patterns. The empirical results confirmed the framework’s robustness in
detecting malicious events, surpassing contemporary modern methods and exhibiting its potential for practical
application in real-world IToT-based networks. Dong et al. [37] presented FEDFOREST, a learning-based
Network Intrusion Detection System (NIDS) that combined the Gradient Boosting Decision Tree (GBDT) and
Federated Learning (FL) framework. FEDFOREST provided high accuracy while maintaining data locality and
privacy, as well as providing interpretability. Local attack features were extracted by several clients for server
training and detection. FL privacy was further protected by privacy-enhancing technology. FEDFOREST
has been tested on a variety of datasets and has proven to be effective, efficient, interpretable, and extendable.
The practical implications included real-world NIDS deployment, effective detection for different tasks, enhanced

privacy in FL, interpretability for experts, and potential extension to other domains requiring privacy-preserving

10



Table 1. Comparison between our study and existing studies
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Reference Year Time IoT | XAI | AD Key Findings Limitations

Capuano et al. [72] | 2022 | 2018 - 2022 X v X | Highlights the extensive analysis of | It focuses on general security ap-
XAT applications in CyberSecurity, and | plications and is not specific to
emphasizing the importance of trans- | ToT.
parency and explainability in enhanc-
ing CyberSecurity practices.

Li et al. [73] 2023 | 1998 - 2022 X v v | Underscores the insufficient attention | Practical implementation
to explainability in anomaly detection, | and evaluation of explainable
highlight the deficiencies in existing | anomaly detection techniques
surveys, and emphasize the study’s goal | are not covered in the study.
of providing a comprehensive overview
of state-of-the-art explainable anomaly
detection techniques

Neupane et al. [74] | 2022 | 2018 - 2022 X v v' | Proposes the concept of Explainable | It focuses only on IDS and not
Intrusion Detection Systems (X-IDS) | IoT.
for cybersecurity, review XAI methods,
present a taxonomy for explainability,
and providing design guidelines for X-

IDS.

Tjoa et al. [75] 2020 | 2000 - 2019 X v X | Medical practitioners are provided with | The paper only concentrates on
insights through a survey on applica- | exploring the functions of XAI
tions of XAT in the medical field. within the healthcare domain.

Kok et al. [76] 2023 | 2008 - 2023 v v X | Provides clear explanations of XAI ter- | A specific IoT domain was not
minology and techniques, present a | addressed and studies related to
thorough review of current studies on | anomaly detection were not ex-
XAI in the IoT domain, and outlining | amined.
emerging challenges, open issues, and
future research directions in XAI from
an loT perspective.

Jagatheesaperumal | 2022 | 2018 - 2022 v v X | Underscores the importance of XAI in | The studies are not evaluated in

et al. [77] the ToT domain, offering insights into | terms of XAI taxonomy and do
XAI frameworks, their characteristics, | not focus on anomaly detection.
and support for various IoT applica-
tions.

Moustafa et al. [78] | 2023 | 2017 - 2022 v v V' | Emphasizes the focus on XAI tech- | It focuses only on post-hoc and
niques for anomaly-based intrusion de- | model-agnostic methods.
tection in IoT networks, highlighting
their effectiveness in ensuring reliabil-
ity, interpreting security events, and in-
tegrating into cyber defense systems.

Javed et al. [79] 2023 | 2017 - 2022 v v X | Provides significant findings by compre- | Studies were examined only in
hensively surveying the current state | terms of application and techni-
and future developments of XAI tech- | cal aspects.
nologies for smart cities.

Our study 2024 | 2018 - 2024 v v v | This study provides a summary of the | -
existing literature by examining XAI-
based anomaly detection mechanisms in
IoT networks and emphasizes the sig-
nificance of XAl in this context. While
analyzing the strengths and weaknesses
of various approaches, the review dis-
cusses the potential benefits and chal-
lenges associated with integrating XAI
techniques into IoT systems.

ML. Alani et al. [41] introduced DeeplloT, an explainable deep learning-based Intrusion Detection System (IDS)
developed for industrial IoT. A Multi-Layer Perceptron (MLP) classifier was used in the proposed system to
recognize various types of attacks such as backdoors, Denial of Service (DoS), and command injection attacks.
This system was trained and tested using WUSTL-I10oT-2021 dataset, achieving an accuracy of more than 99%

while preserving low false-positive and false-negative rates. The implementation of SHAP values improved
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the explainability of the system. DeeplloT outperformed other IDSs in comparison tests. Improving IoT
security, understanding model decisions through SHAP values, and reaching potential improvements for larger
implementation were among the practical implications. Overall, the study contributed a high-performance
and explainable intrusion detection method for industrial IoT domains. Patil et al. [42] offered a new IDS
based on machine learning ensemble methods like DTs, Random Forests (RFs), and Support Vector Machines
(SVMs). The proposed model was trained and evaluated on the CICIDS-2017 dataset with the goal of improving
classification accuracy and decreasing false positives. The XAl algorithm LIME was used in the study to improve
the explainability and comprehensibility of the black-box technique for trustworthy intrusion detection. It also
gave a thorough examination and exploration of SVM-based intrusion detection and feature selection methods,
discussed different sources of data, and established an IDS taxonomy for different machine learning techniques
in this domain. The study highlighted the importance of using machine learning for IDSs and examined
available NIDS implementation tools and datasets. Ultimately, it provided useful insights and contributions
to the design and implementation of successful IDSs based on machine learning techniques. Huong et al.
[43] presented FedeX, a revolutionary Federated Learning-based Explainable Anomaly Detection architecture
built for Industrial Control Systems (ICSs) in smart factories. FedeX employed advanced approaches such as
Variational Autoencoder (VAE), Federated Learning, Support Vector Data Description (SVDD), and SHAP
to provide reliable and interpretable anomaly detection. FedeX ensured interactive training while protecting
data privacy and security in a spread setting by employing Federated Learning. VAE was an effective detection
model that captured regular behavior patterns in ICSs data. SVDD was used to calculate anomaly detection
thresholds automatically. The use of SHAP allows for the interpretation of the black-box learning model, which
provides insights into anomaly predictions. Experimental results demonstrated the superior performance of
FedeX. It outperformed 14 existing anomaly detection methods across multiple parameters, demonstrating its
ability to detect anomalies in ICSs. Particularly, FedeX performed well on the liquid storage and Secure Water
Treatment (SWaT) datasets, with a recall of 1 and an Fl-score of 0.9857. FedeX was also extremely fast, with
a training period of only 7.5 min, and it was low in terms of hardware needs, utilizing only 14% of RAM. FedeX
was well-suited for real-time deployment and edge computing architecture due to these properties. Hussain et
al. [44] described a technique for detecting explainable anomalies in ToT-based industrial processes, meeting
the demand for transparency and interpretability in complex systems. The suggested technique employed
dual substitute models to provide explanations for black-box model outputs. The authors used treeSHAP to
compute feature importance values, which aided in comprehending the significance of distinct characteristics
in discovered anomalies. SHAP force plots and SHAP dependency plots provided insights into the components
contributing to the anomalies, providing a local explanation of the black-box model output. The study also
included an interactive dashboard that combined the deep learning explanation technique with previous records
to provide a thorough perspective of the observed abnormalities. This dashboard was intended to cater to
several personas with diverse levels of technical skill, ensuring good communication and comprehension of the
anomalies. Notably, the study underlined the need to take into account the social context when providing
explanations, emphasizing the importance of establishing trust and confidence in the system. Overall, the
suggested technique advanced the field of IoT-based industrial processes by providing a viable solution for real-
time anomaly detection and thorough explanations, resulting in increased efficiency, decreased downtime, and
informed decision-making. Oseni et al. [46] presented a deep learning-based intrusion detection methodology for
IoT-enabled transportation networks. For cybersecurity experts, the framework utilized the SHAP mechanism to

analyze judgments produced by deep learning-based IDS. The architecture aimed to improve the transparency
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and resilience of IDS in IoT networks by providing explainability. The proposed framework was validated
using the ToN_IoT dataset, and it achieved high performance with 99.15% accuracy and 98.83% F1 score,
demonstrating its effectiveness in securing IoT networks, particularly those related to the Internet of Vehicles
(IoV). Improving the security and design of IoT networks, assisting in root cause investigation, and enabling
the development of more resilient IDSs were some of the practical implications. The proposed explainable
framework, its validation and comparison with other methodologies, and its possible implementation in real-
world scenarios such as intrusion detection and threat intelligence in IoT and Industrial IoT networks were
the paper’s contributions. Overall, the findings highlighted the proposed framework’s capacity to protect IoV
networks from sophisticated cyberattacks. Djenouri et al. [36] presented a new framework for intrusion detection
in the next-generation IoT. Several methods were used in the framework, including MinMax normalization
for data collection and preprocessing, the Marine Predator algorithm for feature selection, a sophisticated
recurrent neural network for training the selected features, and the Shapley score as an explainability method.
The MinMax normalization method was utilized to preprocess the data. This method reduced the data to a
defined range of 0 to 1. The Marine Predator algorithm was used to identify significant features. This algorithm
selected features depending on their importance to the learning process. The selected features were subsequently
used during the training process. The experimental results showed that the suggested system obtained a high
detection rate of over 94% for both true negative and true positive detection, outperforming existing methods
on the difficult NSL-KDD datasets, where their rates were less than 90%. Alani et al. [39] described a simple
and effective method for selecting universal features from IoT intrusion detection datasets. The method aimed
to create machine learning-based IDSs for IoT devices that were highly accurate and efficient. The suggested
approach was applied to three datasets, giving six generic network-flow features. The approach was tested
successfully with a high accuracy of 99.62% and a significant reduction in prediction time. The implementation
of SHAP provided insight into the selected features and their compatibility with current attack strategies. There
were also implications of the study such as improving IoT device and network security, identifying various forms
of attacks, and reducing prediction time. Abououf et al. [58] presented a novel online Event and Anomaly
Detection (EAD) method designed for healthcare monitoring systems in the context of the Medical Internet
of Things (MIoT). The method combines the XAI approach KernelSHAP using a lightweight AutoEncoder to
give easy-to-understand reasons for anomalies detected. The suggested method shows robustness in identifying
and categorizing events through extensive simulations using the Medical Information Mart for Intensive Care
(MIMIC) dataset, demonstrating consistency across a range of anomaly percentages. The dataset was divided
into 70% for training and 30% for testing. The EAD model was trained using the alerts generated during the
EAD step. Utilizing waterfall plots, the study improves the interpretability of the model’s decision-making
process by visually representing each feature’s impact to deviating the projected value from the actual value.
The proposed method effectively enhances anomaly detection in healthcare monitoring systems dedicated to
the MIoT. The combination of these techniques proves successful in providing transparent and reliable insights
into the presence of anomalies. Djenouri et al. [59] proposed a framework that combines deep learning,
evolutionary computation and XAI to address problems in IoT. They used the Gamian angular field to convert
data gathered from various sensors in the IoT ecosystem into an image database, and they used the VGG16
architecture for image training. The integration of XAI technology and hyper-parameter optimization facilitates
a thorough examination of the effect of input values and an increased understanding of the weights within the
deep learning model. After completing comprehensive testing on two different IoT datasets, IPFlow and N-

BaloT, the framework outperforms baseline methods in terms of accuracy and runtime. The new framework
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focuses on addressing IoT issues by examining connections between sensor data components and utilizing deep
learning for prediction and intrusion detection tasks. Furthermore, XAl was used to improve the comprehension
of each feature’s impact on the model output, providing insightful information on the significance of each
feature. Experiments on multivariate time series datasets with various properties are carried out on IPFlow,
which contains flow data from IoT devices, and N-BaloT, which focuses on IoT botnet anomalies. Houda
et al. [60] proposed a framework called FedloT that combines XAI techniques and Blockchain to secure FL-
based IDS in IoT networks. FedloT detects local model changes and mitigates FL-based attacks by leveraging
innovative XAT algorithms. Additionally, it integrates a reputation system based on blockchain to guarantee
the dependability and trustworthiness of the FL training method. The efficacy of the framework in identifying
threats is evaluated by using the UNSW-NB15 dataset. It is demonstrated that FedloT can efficiently enable
federated learning among different users and detect malicious actions. Rathod et al. [61] proposed a secure data
dissemination architecture for IoT-enabled critical infrastructure, combining AI and blockchain technologies
to address security and privacy challenges. The architecture included dimensionality reduction using PCA
(Principal Component Analysis) and XAI and utilized AI classifiers such as RF, DT, SVM, perceptron, and
GaussianNB for data classification. Additionally, an IPFS-driven blockchain network was implemented to ensure
the security of nonmalicious data, with an anomaly detection approach to identify and eliminate poisoned data.
The performance of the proposed architecture was evaluated using various metrics, with the RF classifier
achieving the highest accuracy at 98.46%. The article also discussed the experimental setup, including the use
of Google Colab and Remix IDE, highlighting the importance of integrating Al and blockchain technologies for
enhancing security in IoT-based critical infrastructure. Hasan et al. [63] proposed an explainable ensemble deep
learning approach for intrusion detection in IIoT systems. The method utilized LIME and SHAP techniques to
offer insights into the choices made by deep learning-based IDSs. The suggested framework aims to improve the
transparency and robustness of IDSs in IIoT networks. The ToN_IoT dataset was used to evaluate the efficacy
of the framework, and experiments showed the effectiveness of ensemble learning in improving the results. The
paper also implemented the extreme learning machines (ELM) model as a baseline IDS and compared it with
other models. The results highlight the importance of explainability in IDSs and how it can aid cybersecurity
professionals in assessing system effectiveness and developing more cyber-resilient solutions. Sharma et al.
[62] focused on intrusion detection in IoT networks using DL models. It introduces a DL model designed to
classify various attacks within the dataset, employing a filter-based approach to emphasize essential aspects
and constrain the number of features. Two DL models, Deep neural network (DNN) and Convolution Neural
Network (CNN), are built and tested on publicly accessible datasets, NSL-KDD and UNSW-NB 15. The DL
model shows better accuracy rates for both datasets. To address the challenge of understanding DL models, the
study applies the concept of XAl using LIME and SHAP methods. The study also discusses data preprocessing,

feature selection, and feature preprocessing techniques used in the study.

Perturbation-based methods are also preferred, as they can be employed in any Al model, regardless of
the specific model type. This method is valuable for assessing how adding noise or variations in the data affects
predictions. Huang et al. [34] offered an Energy-efficient and Trustworthy Unsupervised Anomaly Detection
Framework (EATU) for the Industrial IoT. The framework employed a two-stage approach for feature extraction:
Autoencoder-based feature extraction at the first level and Efficient DeepExplainer-based feature selection at
the second level. The Efficient DeepExplainer method is a post-hoc explainable feature selection method that
selects the most significant features for anomaly detection and gives local explanations for the binary classifier’s

decisions. The proposed framework was validated on three real-world IloT datasets with high-dimensional
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Table 2. Summary of XAl-based anomaly detection in IoT according to their taxonomies.

Explanation Reference IoT Domain ML/DL Model XAI Model | Ante Hoc / | Model Specific / | Local / Global
Method Post Hoc Model Agnostic
Zolanvari et al. [31] | IIoT - TRUST - Model agnostic -
Khan et al. [32] IIoT Combination of | LIME Post-hoc Model-agnostic Local
CNNs and LSTM
Dong et al. [37] ToT Security GBDT GBDT Post-hoc Model-specific Local & Global
Alani et al. [41] TIoT CNN SHAP Post-hoc Model-agnostic Local & Global
Patil et al. [42] ToT Security DT, RF, SVM LIME Post-hoc Model-agnostic Local
Huong et al. [43] Smart Manufactur- | SVDD, CNN, and | SHAP Post-hoc Model-agnostic Local & Global
Feature-based ing, IIoT LSTM
Hussain et al. [44] | IToT AE  consisting of | SHAP Post-hoc Model-agnostic Local
LSTM layers
Oseni et al. [46] Transportation CNN SHAP Post-hoc Model-agnostic Local
Djenouri et al. [36] | IoT Security RNN Shapley values Post-hoc Model-agnostic Global
Alani et al. [39] ToT Security Fuzzy  rule-based | SHAP Post-hoc Model agnostic -
classifiers (FRBCs)
Abououf et al. [58] | Healthcare AutoEncoder KernelSHAP Post-hoc Model-agnostic Local & Global
Djenouri et al. [59] | ToT Security RNN-LF, kNN-TF, | RuleFit, SHAP | Post-hoc Model-specific Local
LOF-TF
Houda et al. [60] IoT Security VGG16 Shapley value Post-hoc Model-agnostic Local & Global
Rathod et al. [61] Critical Infrastruc- | RF, DT, SVM, Per- | PCA Post-hoc Model-agnostic Global
ture ceptron, Gaussian
Naive Bayes
Hasan et al. [63] 1IoT CNN LIME, SHAP Post-hoc Model-agnostic Local & Global
Sharma et al. [62] Critical Infrastruc- | CNN, DNN LIME, SHAP Post-hoc Model-agnostic Local & Global
ture
Huang et al. [34] IIoT AE Efficient Deep- | Post-hoc Model-specific Local
. Explainer
Perturbation-based Almuqren et al. | IoT Security IENN LIME Post-hoc Model-agnostic Local
[38]
Sharma et al. [40] | IoT Security KNN/SVM, LIME Post-hoc Model-agnostic Local
DNN/CNN
Anello et al. [45] IIoT Isolation Forest AcME Post-hoc Model-agnostic Global
Rule-based Sivapalan et al. [33] | Healthcare ANN Rule mining Post-hoc Model-specific -
Example-based Guerra- IoT Security DT, kNN, RF LIME Post-hoc Model-agnostic Local
Manzanares et
al. [35]
Feature-based, Abou El Houda et | IoT Security DNNs RuleFit, LIME, | Post-hoc Model-agnostic Local & Global
Example-based, al. [47] SHAP
Perturbation-based
Feature-based, Keshk et al. [48] ToT Security LSTM SPIP Post-hoc Model-agnostic Local & Global
Perturbation-based

characteristics, and the experimental findings showed that it outperforms state-of-the-art approaches in terms
of accuracy, trustworthiness, and energy efficiency. Almugren et al. [38] introduced XAIID-SCPS, an XAI
Enabled Intrusion Detection Technique for Secure Cyber-Physical Systems. This technique involved various
subprocesses such as data preprocessing, Improved Elman Neural Network (IENN)-based classification, and
HESGO-based feature selection. XAIID-SCPS utilized the XAI methodology LIME for increased understanding
and explainability of the black-box method employed for accurate intrusion classification. The results showed
that XAIID-SCPS performs well when compared to other current techniques, with a high accuracy of 98.87%.
Future work on improving detection performance through data clustering, outlier removal techniques, and
extending the model with ensemble voting classifiers was suggested in the study. As a whole, XAIID-SCPS
provided an effective and explainable solution for intrusion detection in Cyber-Physical Systems. Sharma et
al. [40] proposed a deep learning-based model for intrusion detection in IoT networks. The model employed a
DNN architecture and a filter-based technique for feature reduction. The model was trained and tested on the
NSL__KDD dataset, and its accuracy was compared to that of other machine-learning approaches. The chosen
DNN model obtained the best accuracy of 0.993 with certain hyperparameters. The LIME explainability method
was used in the study to provide insights into the model’s predictions. The study had practical consequences
such as increased IoT system security, reduced computational complexity, and improved real-time intrusion

detection in IoT systems. The contributions of the study involved the proposed DNN model, a filter-based
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feature reduction method. The results showed that DNN model outperforms other strategies in terms of
accuracy, showing its potential for IoT intrusion detection. Anello et al. [45] presented a thorough method for
detecting explainable anomalies in TIoT systems. The suggested method combined Isolation Forest, a machine
learning methodology for anomaly identification, with AcME, a rapid and model-agnostic interpretability tool.
The system was designed to detect anomalies in real-time and provided interpretable reasons for those anomalies,
allowing for root-cause analysis and better decision-making. The AcME technique allowed for local explanations,
allowing maintenance personnel to understand the root causes of anomalies and conduct appropriate repair
actions. The proposed approach’s usefulness was demonstrated through trials performed in real-world industrial
instances, demonstrating its effectiveness in detecting abnormalities and presenting interpretable answers. When
compared to the modern SHAP approach, AcME provided comparable or greater interpretability while being
computationally more efficient. This discovery had major practical consequences since it enables preventative
maintenance, lowers downtime, improves operational efficiency, and increases the reliability of IIoT systems.
Overall, the suggested method provided an effective and interpretable solution for anomaly detection in IIoT,
allowing for better root cause analysis and corrective actions.

Rule-based methods are preferred in cases where IoT data can be explained with certain rules and
threshold values. Sivapalan et al. [33] introduced an explainable rule-mining technique for giving importance
to anomalous class detection in ECG data. The proposed method implemented a biased-trained Artificial
Neural Network (ANN) with input features taken from ECG beat sequences. It generated a set of criteria at
all nodes of a tree-like search method, with the rule base built from important features detected in the ANN
via gradient analysis. The resulting model was a rule-based system that determines unusual heartbeats using
quantitative and morphological ECG data. The system provided great accuracy and sensitivity while being
simple to implement, making it ideal for healthcare applications, particularly in IoT-enabled wearable edge
sensors. The model achieved an accuracy of 93% with only nine nodes and an evaluation accuracy of 90%
and 80%, respectively for VEB and SVEB beat types when tested on previously unknown ECG data from the

INCART database.
Example-based methods can be more comprehensible to end users because they explain model predictions

using specific examples. Furthermore, if IoT data exhibits differences between certain events or situations,
example-based methods can be preferred. Guerra-Manzanares et al. [35] investigated the relation between
feature selection and post-hoc interpretation methods in an IoT botnet machine learning workflow. The authors
proposed employing Fisher’s Score for feature selection and LIME for post-hoc interpretation. The study
illustrated that highly accurate and interpretable learning models may be generated with fewer features using
both processes. The study also addressed the interpretability gap in machine learning-based IDSs and offered a
metric for measuring detection accuracy and interpretability together. The findings showed that Fisher’s Score
and LIME were effective at selecting features and generating explanations, providing accurate and interpretable

models for IoT botnet detection.
Each explanation method provides a unique perspective on the model. For example, a feature-based

method can reveal the model’s focus on specific features, while a perturbation-based method can indicate its
sensitivity to the data. Thus, studies often employ multiple methods. Abou El Houda et al. [47] proposed
a two-stage XAI architecture for IDSs in IoT networks. To identify IoT-based threats, the system utilized
a DNN architecture and combined XAI techniques such as RuleFit, LIME, and SHAP to provide local and
global justifications for the IDS’s actions. The goal was to improve communication and trust between the deep
IDS system and cybersecurity specialists. The proposed framework was validated using the NSL-KDD and
UNSW-NB15 datasets, proving its value for enhancing IDS interpretability against IoT attacks and supporting
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Table 3. Summary of the studies according to their security approach and anomaly type.

Reference Dataset ML Security Anomaly Evaluation Metrics IoT Attack Type
Approach Approach Type
Zolanvari et al. [31] | WUSTL-IIoT, - - Point WUSTL-IIoT: {Accuracy(Acc): 99.98%, Matthew’s | Network layer
NSL-KDD, UNSW Correlation Coefficient(MCC): 99.86%, Undetected
Rate(UR): 0.23%},
NSL-KDD: {Acc:99.24&, MMC: 98.47%, UR: 1.18%
I3
UNSW: {Acc: 97.77%, MCC: 94.78%, UR: 1.27% }
Khan et al. [32] Real-world GPS | Unsupervised | Network-based Collective | Recall: 97.17%, Network Layer &
data Acc: 98.26%, Application layer
F-measure: 98.21%,
Precision: 98.29%
Sivapalan et al. [33] | MIT-BIH Arrhyth- | Supervised Host-based Point Acc: 93%, Perception layer
mia Database Sensitivity: 88%,
Specificity: 94%,
Positive Predictive Rate: 67%,
Fp3 Score: 90%
Huang et al. [34] SECOM,  Wafer, | Unsupervised | Network-based Point SECOM: {AUC-ROC: 82.72%, Fl-score: 84.53%}, | Application layer
APS Wafer: {AUC-ROC: 88.16%, Fl-score: 89.37%},
APS: {AUC-ROC: 93.25%, Fl-score: 97.76% }
Guerra- Custom dataset Supervised Host-based Point DT: {Acc: > 97.5% }, kNN: {Acc: > 97.5% }, Network layer
Manzanares et RF: {Acc: > 96.25% }
al. [35]
Djenouri et al. [36] | NSL-KDD Supervised Network-based Collective | TPR(True Positive Rate): > 94% Network layer
TNR(True Negative Rate): > 94%
Dong et al. [37] CIC-DDo0S2019, Supervised Network-based Collective | Acc: { DD0S2019: 67.03%, MalDroid2020: 89.63%, | Network layer
CICMalDroid2020, Darknet2020: 86.76%, DoHBrw2020: 79.63% },
CIC-Darknet2020, Miss rate: { DDo0S2019: 4.40%, MalDroid2020:
CIRA-CIC- 7.72%, DoHBrw2020: 0.71% },
DoHBrw-2020 Fl-score: { DD0S2019: 494.60%, MalDroid2020:
88.59%, DoHBrw2020: 99.54% }
Almugren et al. | NSL-KDD Supervised Network-based - Acc: 98.87%, Precision: 98.95%, Recall: 98.87%, Network layer
(38] Fl-score: 98.91%, AUC-Score: 98.87%
Alani et al. [39)] TON_IoT, IoT-ID, | Supervised Host-based - Acc: 99.62%, Network layer
Aposemat I0T-23 Precision: 99.55%,
Recall: 99.61%,
Fl-score: 99.58%,
Training Time: 0.3339(s), Testing Time: 0.4549 (yus)
Sharma et al. [40] NSL-KDD Supervised Network-based Collective | Acc: 99.3%, Loss: 0.00001 Network layer
Alani et al. [41] WUSTL-II0T-2021 | Supervised Host-based Collective | Acc: 99.94%, Precision: 99.92%, Recall: 99.95%, Network layer
Fl-score: 99.94%
Patil et al. [42] CICIDS-2017 Supervised Network-based P‘omt . Acc: 99.25%, Precision: 89%, Recall: 89%, Network layer
Collective Fl-score: 89%
SC N 0
Huong et al. [43] SCADA liquid stor- | Unsupervised | Network-based Point Threshold: 0.26, Acc: 90.17%, -
age infrastructure Precision: 90.59%,
dataset, SWaT Recall: 98.06%,
Fl-score: 94.18%,
AUC: 90%
Anello et al. [45] Roller Coaster | Unsupervised | - Point - -
dataset, Com-
pacting  Machine
dataset
Oseni et al. [46] ToN_IoT Supervised Network-based - Acc: 99.15%, Precision: 99.10%, Recall: 99.15%, Perception Layer &
Fl-score: 98.83% Network Layer &
Application layer
Abou El Houda et | NSL-KDD, UNSW- | Supervised Host-based - Acc: 88%, Precision: 96%, Recall: 88%, Perception Layer &
al. [47] NB15 Fl-score: 88% Network Layer &
Application layer
Hussain et al. [44] | SWaT Unsupervised | Host-based Point - -
Keshk et al. [48] NSL-KDD, UNSW- | Supervised Network-based Collective | NSL-KDD: {Acc: 0.931, Precision: 0.958, Recall: | Perception Layer &
NB15, ToN_IoT 0.829, Fl-score: 0.889}, Network Layer &
UNSW-NB15: {Acc: 0.840, Precision: 0.799, Recall: | Application layer
0.943, Fl-score: 0.866},
ToN_IoT: {Acc: 0.987, Precision: 0.822, Recall:
0.902, Fl-score: 0.859}
Abououf et al. [58] | MIMIC dataset Unsupervised | Network-based Point Precision: 1.0, Recall: 0.94, Fl-score: 0.97 Application layer
Djenouri et al. [59] | PFlow, N-BaloT Supervised Network-based - - Application layer
Houda et al. [60] UNSW-NB15 Supervised Network-based - Acc: 99%, Precision: 99%, Recall: 99%, Application layer
Fl-core: 99%
Rathod et al. [61] IEC  60870-5-104 | Supervised Network-based Point Acc: 98.46%, Precision: 97.56%, Recall: 96.53%, Application layer
IDS dataset Fl-core: 96.65%
Sharma et al. [62] NSL-KDD Cup, | Supervised Network-based - NSL-KDD: { Precision: 1.0, Recall: 1.0, Fl-core: | Network layer
UNSW-NB15 1.0}
UNSW-NBnew: { Precision: 0.57, Recall: 0.04 F1-
core: 0.07}
Hasan et al. [63] ToN_IoT Supervised Network-based Point Acc: 99.69%, Precision: 100%, Recall: 100%, Perception Layer &

Fl-core: 100%, Error: 0.0030, Sensitivity: 99.68%,
Specificity: 99.63%

Network Layer &
Application layer
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cybersecurity specialists in understanding decision-making processes. Improving IDS interpretability, promoting
better decision comprehension, and developing more efficient IDSs for IoT networks were some of the practical
consequences. The unique XAl-based framework, the integration of DNN architecture with XAI methodologies,
and the validation of the system’s performance using real-world datasets are the contributions. Overall, the
results showed that the proposed approach had the potential to improve IDS interpretability in IoT networks.
Keshk et al. [48] presented a unique explainable IDS for IoT networks using an LSTM model. To extract input
features and evaluate the LSTM model, the system integrated a unique SPIP (SHAP, Permutation Feature
Importance, ICE, PDP) architecture. The SPIP framework integrated feature-based and perturbation-based
methodologies to discover relevant characteristics and examine their effect on model output. The paper discussed
related work on intrusion detection and explainable Al-based IDS in IoT networks, and it employed a variety
of XAI approaches, including SHAP, PFI, ICE, and PDP, to assess the model’s operation and predictions. The
practical consequences included supporting administrators and decision-makers in understanding complicated
attack behavior, increasing the effectiveness and efficiency of IDSs, and offering local and global explanations.
The unique intrusion detection framework, the SPIP framework for feature extraction, and the coupling of XAI
approaches with LSTM for intrusion detection and explanation are the contributions. The results showed good

detection accuracy and interpretability, as well as the potential to improve IDSs in IoT networks.

5. Challenges and future directions

The challenges and future works in XAlI-based anomaly detection for the IoT encompass several key aspects
that need to be addressed to enhance the effectiveness and applicability of anomaly detection techniques. In this
section, we discuss the challenges faced in analyzing complex and large-volume IoT data, as well as potential

future research directions.

e Data complexity: IoT generates vast amounts of unstructured and heterogeneous data from numerous
sources, including sensors and devices. This data is multidimensional and lacks a predefined structure,
often necessitating sophisticated analysis techniques. Managing the abundance of variables and addressing
potential data sparsity pose challenges in accurately detecting anomalies. Although XAI methods and
feature selection techniques may have overlapping capabilities, they can complement each other effectively.
XAI approaches can be used in conjunction with feature selection techniques to reduce dimensionality,

thereby helping mitigate data complexity [49].

e Scalability: The exponential growth of IoT devices causes an increase in data volume and velocity as
well. This large influx of data must be handled efficiently by anomaly detection algorithms in real
time. Researchers are investigating distributed and parallel processing solutions that leverage cloud and
edge computing to distribute the workload and boost scalability. Algorithm optimization, data division,
sampling, and approximate approaches all help to improve scalability. In the constantly developing IoT
ecosystem, addressing scalability issues is critical to ensuring effective and real-time anomaly detection.
XAI techniques can be scalable to handle large datasets and real-time processing, where anomalies can

occur rapidly [50].

o Interoperability vs. accuracy: Balancing interpretability and accuracy poses a challenge in XAI-based
anomaly detection for IoT. X AT aims to provide explicit explanations for AI model decisions; nevertheless,
sophisticated models frequently compromise interpretability for greater accuracy, whereas simpler models

are more interpretable but less accurate. It is critical to find the correct balance. Researchers are
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investigating hybrid models that combine accuracy with interpretability or improve the interpretability
of complex models through visualization or rule extraction. It is also critical to include contextual
information. Finding the right trade-off remains a difficulty in developing transparent and accurate

anomaly detection systems that users can trust and understand.

Dynamic nature of anomalies: Anomalies can alter over time, and as the system matures, new sorts of
anomalies may emerge. Conventional anomaly detection approaches based on static models encounter
difficulties in promptly adapting and identifying anomalies. Researchers are addressing this issue by
creating algorithms that can learn and update anomaly detection models in real time. These algorithms
use online learning and adaptive modeling techniques to dynamically adapt to shifting patterns and
identify abnormalities as they occur. Unsupervised learning, clustering, and outlier identification are
being investigated as methods for capturing the dynamic characteristics of anomalies without relying on
existing labels or training data. XAl-based techniques can promote preemptive reactions and prevent

potential damages in IoT systems by offering real-time and adaptive anomaly detection [51].

Data privacy: The integration of XAI into IoT raises concerns regarding data privacy. In the quest for
transparent and interpretable artificial intelligence, XAI developers must carefully consider the privacy
implications, given that the analysis often involves sensitive data. Preserving user privacy poses a
challenge in XAI, emerging as a fundamental step in obtaining informed consent [64]. It is essential
to ensure that users know how their data will be used for XAl purposes and provide consent accordingly.
Transparency requires clear communication on how data is collected, processed, and used in XAl systems.
Striking a sensitive balance between protecting individual privacy and extracting meaningful insights is
a challenge that requires the exploration of advanced anonymization and pseudonymization techniques.
Regulatory compliance introduces another complex issue, as data protection laws such as the General Data
Protection Regulation (GDPR) demand stringent measures for the ethical use of personal information
[65]. XAT systems must be designed and implemented with careful adherence to these legal frameworks,
promoting a secure and compliant environment. The integration of XAI into IoT systems not only
advances interpretability but also necessitates a conscientious approach to user data privacy. Addressing
these challenges requires a multifaceted strategy encompassing user awareness, regulatory compliance,

exploration of advanced anonymization techniques, and implementation of robust security measures [66].

Data breach: The use of XAI presents a complex problem in the effort to improve transparency in black-
box systems, especially with the rising risk of data breaches. AI aims to enhance transparency by providing
understandable explanations for the decisions made by Al models. However, in the process of achieving
transparency, there is a risk of unintended data breaches [67]. XAI often operates on comprehensive
datasets to elucidate complex algorithms and decision-making processes. The effort to clarify decision
processes can potentially lead to the unintentional revelation of sensitive information within the data.
This dilemma highlights the need to strike a balance between the transparency goal of XAI and the
imperative to safeguard against inadvertent data leaks. Addressing data breaches in the realm of XAI
involves developing strategies and protective measures to mitigate the risk of exposing sensitive information
during the explanation generation process [68]. This may include implementing robust anonymization
techniques, access controls, and encryption methods to ensure that the benefits of transparency provided

by XAI do not compromise data security and confidentiality.
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XAI technologies have the potential to provide solutions to important problems in many fields by
combining them with different technologies in the future. They can be used to detect abnormal situations
and explain these anomalies by analyzing large amounts of data from IoT devices. These technologies can play
a key role in IoT applications spanning from factories to healthcare and more. Additionally, these technologies
can help develop better tools to explain Al model results that are difficult to understand. In the future, advanced
XAT methods that address privacy and security issues may help users and organizations have greater trust in
these technologies [52]. Another important issue is that IoT networks generally have a distributed structure,
and such networks must combine XAI technologies to account for local and global deployment. Finally, XAI
can offer the ability to understand the details of specific application domains and produce detailed descriptions,
especially through application-specific interfaces [53]. This could open ways to integrate XAI with different

technologies and problems in the future.

6. Conclusion

In this paper, we highlight the importance of XAl-based anomaly detection for the IoT. XAI techniques provide
transparent and interpretable explanations for anomaly detection in IoT systems, enabling users to understand
model decisions and trust in model decisions. The survey comprehensively examined the existing studies in
the literature comparatively by the XAI taxonomy and methodology. As a result of the investigations, it is
observed that more studies are carried out in the Industrial IoT domain and mostly the feature-based approach
was addressed. Also, post-hoc explainability methods have been widely preferred. It is observed that LIME and
SHAP are frequently preferred techniques in studies. In addition, the challenges of XAI techniques in IoT are
mentioned. Understanding these challenges will form the basis for developing sustainable and effective solutions
for future research. Finally, potential future directions are given based on the challenging issues. These provide
a framework for encouraging more in-depth studies in the field of XAl-based anomaly detection and increasing
knowledge in this field.

References

[1] Patel K, Patel S. Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling Technologies, Appli-
cation & Future Challenges. International journal of engineering science and computing 2016; 6 (5).

[2] Gunning D, Aha D. Darpa’s explainable artificial intelligence (XAI) program. AI Magazine 2019; 40 (2): 44-58. doi:
https://doi.org/10.1609/aimag.v40i2.2850

[3] Arrieta AB, Diaz-Rodriguez N, Del Ser J, Bennetot A, Tabik S et al. Explainable Artificial Intelligence (XAI):

Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 2020; 58: 82-115.
doi: https://doi.org/10.1016/j.inffus.2019.12.012

[4] Tritscher J, Krause A, Hotho A. Feature relevance XAl in anomaly detection: Reviewing approaches and challenges.
Frontiers in Artificial Intelligence 2023; 6: 1099521. doi: https://doi.org/10.3389/frai.2023.1099521

[5] Hassija V, Chamola V, Saxena V, Jain D, Goyal P et al. A survey on IoT security: application areas, security
threats, and solution architectures. IEEE Access 2019; 7: 82721-82743. doi: 10.1109/ACCESS.2019.2924045

[6] Burhan M, Rehman RA, Khan B, Kim BS. IoT elements, layered architectures and security issues: A comprehensive
survey. Sensors 2018; 18 (9): 2796. doi: https://doi.org/10.3390/s18092796

[7] Mahmoud R, Yousuf T, Aloul F, Zualkernan I. Internet of things (IoT) security: Current status, challenges
and prospective measures. In: 10th International Conference for Internet Technology and Secured Transactions
(ICITST); London, UK; 2015. pp. 336-341. doi: 10.1109/ICITST.2015.7412116

20



(8]

[10]

[11]

[12]

[14]

[15]

[16]

[24]

[25]

EREN et al./Turk J Elec Eng & Comp Sci

Ahemd MM, Shah MA, Wahid A. IoT security: A layered approach for attacks & defenses. In: Interna-
tional Conference on Communication Technologies (ComTech); Rawalpindi, Pakistan; 2017. pp. 104-110. doi:
10.1109/COMTECH.2017.8065757

Suo H, Wan J, Zou C. Security in the internet of things: a review. In: International Conference on Computer
Science and Electronics Engineering; Hangzhou, China; 2012. pp. 648-651. doi: 10.1109/ICCSEE.2012.373

Aarika K, Bouhlal M, Abdelouahid RA, Elfilali S, Benlahmar E. Perception layer security in the internet of things.
Procedia Computer Science 2020; 175: 591-596. doi: https://doi.org/10.1016/j.procs.2020.07.085

Deogirikar J, Vidhate A. Security attacks in IoT: A survey. In: International Conference on I-.SMAC (IoT in Social,
Mobile, Analytics and Cloud); Palladam, India; 2017. pp. 32-37. doi: 10.1109/I-SMAC.2017.8058363

Swamy SN, Jadhav D, Kulkarni N. Security threats in the application layer in IoT applications. In: International
conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud); Palladam, India; 2017. pp. 477-480. doi:
10.1109/I-SMAC.2017.8058395

Bezerra F, Wainer J, Aalst WM. Anomaly detection using process mining. In: International Workshop
on Business Process Modeling, Development and Support; Berlin, Heidelberg; 2009. pp 149-161. doi:
https://doi.org/10.1007/978-3-642-01862-6__13

Araya DB, Grolinger K, ElYamany HF, Capretz MA, Bitsuamlak G. An ensemble learning framework
for anomaly detection in building energy consumption. Energy and Buildings 2017; 144: 191-206. doi:
https://doi.org/10.1016/j.enbuild.2017.02.058

Chatterjee A, Ahmed BS. IoT anomaly detection methods and applications: A survey. Internet of Things 2022; 19:
100568. doi: https://doi.org/10.1016/j.i0t.2022.100568

Lim SY, Jones A. Network anomaly detection system: The state of art of network behaviour analysis. In: Interna-
tional Conference on Convergence and Hybrid Information Technology; Daejeon, Korea (South); 2008. pp. 459-465.
doi: 10.1109/ICHIT.2008.249

Agrawal S, Agrawal J. Survey on anomaly detection using data mining techniques. Procedia Computer Science
2015; 60: 708-713. doi: https://doi.org/10.1016/j.procs.2015.08.220

Lunt TF, Jagannathan R, Lee R, Whitehurst A, Listgarten S. Knowledge based intrusion detection. In: Proceedings
of the Annual AI Systems in Government Conference; Washington, DC; 1989.

Omar S, Ngadi A, Jebur HH. Machine learning techniques for anomaly detection: an overview. International Journal
of Computer Applications 2013; 79 (2).

Anton SD, Kanoor S, Fraunholz D, Schotten HD. Evaluation of machine learning-based anomaly detection algo-
rithms on an industrial modbus/tcp data set. In: Proceedings of the 13th international conference on availability,
reliability and security; Hamburg, Germany; 2018. pp. 1-9. doi: https://doi.org/10.1145/3230833.3232818
Sivamohan S, Sridhar SS. An optimized model for network intrusion detection systems in industry 4.0 us-
ing XAI based Bi-LSTM framework. Neural Computing and Applications 2023; 35 (15): 11459-11475. doi:
https://doi.org/10.1007/s00521-023-08319-0

Zhang Y, Xu F, Zou J, Petrosian OL, Krinkin KV. XAI Evaluation: Evaluating Black-Box Model Explanations for
Prediction. In: II International Conference on Neural Networks and Neurotechnologies (NeuroNT); Saint Petersburg,
Russia; 2021. pp. 13-16. doi: 10.1109/NeuroNT53022.2021.9472817

Gunning D, Stefik M, Choi J, Miller T, Stumpf S et al. XAI-—Explainable artificial intelligence. Science Robotics
2019; 4 (37). doi: 10.1126/scirobotics.aay712

Das A, Rad P. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv preprint
arXiv 2020; 11371. doi: https://doi.org/10.48550/arXiv.2006.11371

Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE
access 2018; 6: 52138-52160. doi: 10.1109/ACCESS.2018.2870052

21



[26]

[27]

[33]

[34]

22

EREN et al./Turk J Elec Eng & Comp Sci

Hariharan S, Rejimol Robinson RR, Prasad RR, Thomas C, Balakrishnan N. XAT for intrusion detection system:
comparing explanations based on global and local scope. Journal of Computer Virology and Hacking Techniques
2023; 19 (2): 217-239. doi: https://doi.org/10.1007/s11416-022-00441-2

Neves I, Folgado D, Santos S, Barandas M, Campagner A et al. Interpretable heartbeat classification us-
ing local model-agnostic explanations on ECGs. Computers in Biology and Medicine 2021; 133: 104393. doi:
https://doi.org/10.1016/j.compbiomed.2021.104393

Macha D, Kozielski M. Wrébel L., Sikora M. RuleXAI—A package for rule-based explanations of machine learning
model. SoftwareX 2022; 20: 101209. doi: https://doi.org/10.1016/j.s0ftx.2022.101209

Qiu L, Yang Y, Cao CC, Liu J, Zheng Y et al. Resisting Out-of-Distribution Data Problem in Perturbation of XAI.
arXiv preprint arXiv:2107.14000 2021; doi: https://doi.org/10.48550/arXiv.2107.14000

Qiu L, Yang Y, Cao CC, Zheng Y, Ngai H et al. Generating perturbation-based explanations with robustness to
out-of-distribution data. In: Proceedings of the ACM Web Conference; New York, USA; 2022. pp. 3594-3605. doi:
https://doi.org/10.1145/3485447.3512254

Zolanvari M, Yang Z, Khan K, Jain R, Meskin N. TRUST XAI: Model-Agnostic Explanations for AT With a Case
Study on IToT Security. IEEE Internet of Things Journal 2021; 10 (4): 2967 - 2978. doi: 10.1109/JI10T.2021.3122019

Khan TA, Moustafa N, Pi D, Sallam KM, Zomaya AY et al. A New Explainable Deep Learning Framework for
Cyber Threat Discovery in Industrial IoT Networks. IEEE Internet of Things Journal 2021; 9 (13): 11604-11613.
doi: 10.1109/J10T.2021.3130156

Sivapalan G, Nundy KK, James A, Cardiff B, John D. Interpretable rule mining for real-time ecg anomaly detection
in IoT edge sensors. IEEE Internet of Things Journal 2023; 10 (15): 13095 - 13108. doi: 10.1109/J10T.2023.3260722

Huang Z, Wu Y, Tempini N, Lin H, Yin H. An energy-efficient and trustworthy unsupervised anomaly
detection framework (eatu) for iloT. ACM Transactions on Sensor Networks 2022; 18 (4): 1-18. doi:
https://doi.org/10.1145/3543855

Guerra-Manzanares A, Nomm S, Bahsi H. Towards the integration of a post-hoc interpretation step into the
machine learning workflow for IoT botnet detection. In: 18th IEEE International Conference On Machine Learning
And Applications (ICMLA); Boca Raton, FL, USA; 2019. pp. 1162-1169. doi: 10.1109/ICMLA.2019.00193

Djenouri Y, Belhadi A, Srivastava G, Lin JCW, Yazidi A. Interpretable intrusion detection for next generation of in-
ternet of things. Computer Communications 2023; 203: 192-198. doi: https://doi.org/10.1016/j.comcom.2023.03.005

Dong T, Li S, Qiu H, Lu J. An interpretable federated learning-based network intrusion detection framework. arXiv
preprint arXiv:2201.03134 2022; doi: https://doi.org/10.48550/arXiv.2201.03134

Almugren L, Maashi MS, Alamgeer M, Mohsen H, Hamza MA et al. Explainable Artificial Intelligence Enabled
Intrusion Detection Technique for Secure Cyber-Physical Systems. Applied Sciences 2023; 13 (5): 3081. doi:
https://doi.org/10.3390/app13053081

Alani MM, Miri A. Towards an explainable universal feature set for IoT intrusion detection. Sensors 2022; 22 (15):
5690. doi: https://doi.org/10.3390/522155690

Sharma B, Sharma L, Lal C. Anomaly-Based DNN Model for Intrusion Detection in IoT and Model Explanation:
Explainable Artificial Intelligence. In: Proceedings of Second International Conference on Computational Electronics
for Wireless Communications: ICCWC 2022; Singapore; 2023. pp. 315-324. doi: https://doi.org/10.1007/978-981-
19-6661-3_ 28

Alani MM, Damiani E, Ghosh U. DeeplloT: An explainable deep learning based intrusion detection system for
industrial IOT. In: IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW);
Bologna, Ttaly; 2022. pp. 169-174. doi: 10.1109/ICDCSW56584.2022.00040

Patil S, Varadarajan V, Mazhar SM, Sahibzada A, Ahmed N et al. Explainable artificial intelligence for intrusion
detection system. Electronics 2022; 11 (19): 3079. doi: https://doi.org/10.3390/electronics11193079



[43]

[44]

[48]

[49]

[50]

[51]

[52]

[53]

EREN et al./Turk J Elec Eng & Comp Sci

Huong TT, Bac TP, Ha KN, Hoang NV, Hoang NX et al. Federated learning-based explainable anomaly detection
for industrial control systems. IEEE Access 2022; 10: 53854-53872. doi: 10.1109/ACCESS.2022.3173288

Hussain MT, Perera C. Explainable sensor data-driven anomaly detection in Internet of Things systems. In:
IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI); Milano,
Ttaly; 2022. pp. 80-81. doi: 10.1109/I0TDI54339.2022.00021

Anello E, Masiero C, Ferro F, Ferrari F, Mukaj B et al. Anomaly Detection for the Industrial Internet of Things: an
Unsupervised Approach for Fast Root Cause Analysis. In: IEEE Conference on Control Technology and Applications
(CCTA); Trieste, Italy; 2022. pp. 1366-1371. doi: 10.1109/CCTA49430.2022.9966158

Oseni A, Moustafa N, Creech G, Sohrabi N, Strelzoff A et al. An explainable deep learning framework for resilient in-
trusion detection in IoT-enabled transportation networks. IEEE Transactions on Intelligent Transportation Systems
2022; 24 (1): 1000-1014. doi: 10.1109/TITS.2022.3188671

Abou El Houda Z, Brik B, Khoukhi L. “why should i trust your ids?”: An explainable deep learning framework
for intrusion detection systems in internet of things networks. IEEE Open Journal of the Communications Society
2022; 3: 1164-1176. doi: 10.1109/0JCOMS.2022.3188750

Keshk M, KoronloTis N, Pham N, Moustafa N, Turnbull B et al. An explainable deep learning-
enabled intrusion detection framework in IoT networks. Information Sciences 2023; 639: 119000. doi:
https://doi.org/10.1016/j.ins.2023.119000

Ribeiro J, Silva R, Cardoso L, Alves R. Does Dataset Complexity Matters for Model Explainers?. In: IEEE
International Conference on Big Data (Big Data); Orlando, FL, USA; 2021. pp. 5257-5265. doi: 10.1109/Big-
Data52589.2021.9671630

Botana ILR, Eiras-Franco C, Alonso-Betanzos A. Regression tree based explanation for anomaly detection algo-
rithm. Proceedings 2020; 54 (1): 7. doi: https://doi.org/10.3390/proceedings2020054007

Wawrowski ¥, Michalak M, Bialas A, Kurianowicz R, Sikora M et al. Detecting anomalies and attacks in network
traffic monitoring with classification methods and XAl-based explainability. Procedia Computer Science 2021; 192:
2259-2268. doi: https://doi.org/10.1016/j.procs.2021.08.239

Ha DT, Bac TP, Tran KD, Tran KP. Efficient and Trustworthy Federated Learning-Based Explainable Anomaly De-
tection: Challenges, Methods, and Future Directions. In: Artificial Intelligence for Smart Manufacturing: Methods,
Applications, and Challenges. Cham: Springer International Publishing, 2023, pp. 145-166.

Ahmed I, Jeon G, Piccialli F. From artificial intelligence to explainable artificial intelligence in industry 4.0: a
survey on what, how, and where. IEEE Transactions on Industrial Informatics 2022; 18 (8): 5031-5042. doi:
10.1109/T11.2022.3146552

Mukherjee S, Rupe J, Zhu J. XAI for Communication Networks. In: TEEE International Symposium on Soft-
ware Reliability Engineering Workshops (ISSREW); Charlotte, NC, USA; 2022. pp. 359-364. doi: 10.1109/ISS-
REW55968.2022.00093

Nguyen TN, Choo R. Human-in-the-loop xai-enabled vulnerability detection, investigation, and mitigation. In: 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE); Melbourne, Australia; 2021. pp.
1210-1212. doi: 10.1109/ASE51524.2021.9678840

Gentile D. Jamieson G. Donmez B. Evaluating human understanding in XAI systems. In: ACM CHI XCXAI
Workshop; 2021.

Mahalle PN, Patil RV, Dey N, Crespo RG, Sherratt RS et al. Explainable Al for Human-Centric Ethical IoT
Systems. IEEE Transactions on Computational Social Systems 2023; 1-13. doi: 10.1109/TCSS.2023.3330738

Abououf M, Singh S, Mizouni R, Otrok H. Explainable AI for Event and Anomaly Detection and Classifi-
cation in Healthcare Monitoring Systems. IEEE Internet of Things Journal 2023; 11 (2): 3446 - 3457. doi:
10.1109/JI0T.2023.3296809

23



[59]

[60]

(68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

24

EREN et al./Turk J Elec Eng & Comp Sci

Djenouri Y, Belhadi A, Srivastava G, Lin JCW. When explainable Al meets IoT applications for supervised learning.
Cluster Computing 2023; 26 (4): 2313-2323. doi: https://doi.org/10.1007/s10586-022-03659-3

Abou El Houda Z, Moudoud H, Khoukhi L. Securing Federated Learning through Blockchain and Explainable AI
for Robust Intrusion Detection in IoT Networks. In: IEEE INFOCOM 2023-IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS); Hoboken, NJ, USA; 2023. pp. 1-6. doi: 10.1109/INFOCOMWK-
SHPS57453.2023.10225769

Rathod T, Jadav NK, Tanwar S, Polkowski Z, Yamsani N et al. Al and Blockchain-Based Secure Data
Dissemination Architecture for IoT-Enabled Critical Infrastructure. Sensors 2023; 23 (21): 8928. doi:
https://doi.org/10.3390 /523218928

Sharma B, Sharma L, Lal C, Roy S. Explainable artificial intelligence for intrusion detection in IoT
networks: A deep learning based approach. Expert Systems with Applications 2024; 238: 121751. doi:
https://doi.org/10.1016/j.eswa.2023.121751

Hasan MK, Sulaiman R, Islam S, Rehman AU, Khan AR. An Explainable Ensemble Deep Learning Approach for
Intrusion Detection in Industrial Internet of Things. IEEE Access 2023; 11: 115047 - 115061. doi: 10.1109/AC-
CESS.2023.3323573

Saeed W, Omlin C. Explainable AT (XAI): A systematic meta-survey of current challenges and future opportunities.
Knowledge-Based Systems 2023; 263: 110273. doi: https://doi.org/10.1016/j.knosys.2023.110273

Colaner N. Is explainable artificial intelligence intrinsically valuable?. Al & SOCIETY 2022; 37: 231-238.
doi:https://doi.org/10.1007 /s00146-021-01184-2

Majumdar S. Fairness, explainability, privacy, and robustness for trustworthy algorithmic decision-making. Big
Data Analytics in Chemoinformatics and Bioinformatics 2023; 61-95. doi: https://doi.org/10.1016/B978-0-323-
85713-0.00017-7

Kuppa A, Le-Khac NA. Black box attacks on explainable artificial intelligence (XAI) methods in cyber se-
curity. In: International Joint Conference on neural networks (IJCNN); Glasgow, UK; 2020. pp. 1-8. doi:
10.1109/1JCNN48605.2020.9206780

Srivastava G, Jhaveri RH, Bhattacharya S, Pandya S, Maddikunta PKR et al. XAI for cybersecurity:
state of the art, challenges, open issues and future directions. arXiv preprint arXiv:2206.03585 2022; doi:
https://doi.org/10.48550/arXiv.2206.03585

Singh AP, Singh MD. Analysis of host-based and network-based intrusion detection system. International Journal
of Computer Network and Information Security 2014; 6 (8): 41-47. doi: 10.5815/ijcnis.2014.08.06

Ariyapala K, Do Hoang G, Huynh NA, Wee KN, Conti M. A host and network based intrusion detection for android
smartphones. In: 30th International Conference on Advanced Information Networking and Applications Workshops
(WAINA); Crans-Montana, Switzerland; 2016. pp. 849-854. doi: 10.1109/WAINA.2016.35

Hu J. Host-based anomaly intrusion detection. In: Handbook of information and communication security. Berlin,
Heidelberg: Springer, 2010, pp. 235- 255. doi: https://doi.org/10.1007/978-3-642-04117-4_13

Capuano N, Fenza G, Loia V, Stanzione C. Explainable artificial intelligence in cybersecurity: A survey. IEEE
Access 2022; 10: 93575-93600. doi: 10.1109/ACCESS.2022.3204171

Li Z, Zhu Y, Van Leeuwen M. A survey on explainable anomaly detection. ACM Transactions on Knowledge
Discovery from Data 2023; 18 (1): 1-54. doi: https://doi.org/10.1145/3609333

Neupane S, Ables J, Anderson W, Mittal S, Rahimi S et al. Explainable intrusion detection systems (x-ids): A
survey of current methods, challenges, and opportunities. IEEE Access 2022; 10: 112392-112415. doi: 10.1109/AC-
CESS.2022.3216617

Tjoa E, Guan C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAl IEEE Transactions
on Neural Networks and Learning Systems 2020; 32 (11): 4793-4813. doi: 10.1109/TNNLS.2020.3027314



EREN et al./Turk J Elec Eng & Comp Sci

[76] Kok I, Okay FY, Muyanh O, Ozdemir S. Explainable artificial intelligence (xai) for internet of things: a survey.
IEEE Internet of Things Journal 2023; 10 (16): 14764 - 14779. doi: 10.1109/JI0T.2023.3287678

[77] Jagatheesaperumal SK, Pham QV, Ruby R, Yang Z, Xu C et al. Explainable Al over the Internet of Things (IoT):
Overview, state-of-the-art and future directions. IEEE Open Journal of the Communications Society 2022; 3: 2106
- 2136. doi: 10.1109/0JCOMS.2022.3215676

[78] Moustafa N, Koroniotis N, Keshk M, Zomaya AY, Tari Z. Explainable Intrusion Detection for Cyber Defences in
the Internet of Things: Opportunities and Solutions. IEEE Communications Surveys & Tutorials 2023; 25 (3): 1775
- 1807. doi: 10.1109/COMST.2023.3280465

[79] Javed AR, Ahmed W, Pandya S, Maddikunta PKR, Alazab M et al. A survey of explainable artificial intelligence
for smart cities. Electronics 2023; 12 (4): 1020. doi: https://doi.org/10.3390/electronics12041020

25



	Introduction
	Research methodology

	Anomaly detection in IoT
	IoT
	IoT attacks
	Anomaly detection techniques in IoT
	XAI-based anomaly detection

	Explainable artificial intelligence (XAI)
	XAI taxonomy
	Explainability methods

	XAI-based anomaly detection in IoT networks
	Challenges and future directions
	Conclusion

